Penalized unsupervised learning with outliers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized unsupervised learning with outliers.

We consider the problem of performing unsupervised learning in the presence of outliers - that is, observations that do not come from the same distribution as the rest of the data. It is known that in this setting, standard approaches for unsupervised learning can yield unsatisfactory results. For instance, in the presence of severe outliers, K-means clustering will often assign each outlier to...

متن کامل

Unsupervised Ensemble Learning for Mining Top-n Outliers

Outlier detection is an important and attractive problem in knowledge discovery in large datasets. Instead of detecting an object as an outlier, we study detecting the n most outstanding outliers, i.e. the top-n outlier detection. Further, we consider the problem of combining the top-n outlier lists from various individual detection methods. A general framework of ensemble learning in the top-n...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Semi-supervised Learning with Penalized Probabilistic Clustering

While clustering is usually an unsupervised operation, there are circumstances in which we believe (with varying degrees of certainty) that items A and B should be assigned to the same cluster, while items A and C should not. We would like such pairwise relations to influence cluster assignments of out-of-sample data in a manner consistent with the prior knowledge expressed in the training set....

متن کامل

Incremental Learning for Fully Unsupervised Word Segmentation Using Penalized Likelihood and Model Selection

We present a novel incremental learning approach for unsupervised word segmentation that combines features from probabilistic modeling and model selection. This includes super-additive penalties for addressing the cognitive burden imposed by long word formation, and new model selection criteria based on higher-order generative assumptions. Our approach is fully unsupervised; it relies on a smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Its Interface

سال: 2013

ISSN: 1938-7989,1938-7997

DOI: 10.4310/sii.2013.v6.n2.a5